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AbItnct-ln this paper it is shown that the solution, (D, ~), to the nonhomogeneous equations pf
equilibrium for micropolar continua can be obtained by superposition of two parts, namely (D1 and (D", ~).
The first part, D', is identical to that obtained in the Hookean case, while the second part depends only on
the constants a, p, 'Y and f which are specific to Cosserat continua. Using these results and Fourier's
intqral transforms, Green's functions for a Cosserat body are obtained. In addition, solutions for the centre
of compression and center of torsion are given and problems involving the distortions of micropolar
continua are considered.

I. BASIC SOLUTION
Schaefer[1]* has shown that the solution to the homogeneous equations of equilibrium for a
micropolar continuum can be constructed by superposition of two parts, the first of which is the
same as for a Hookean body while the second part depends only on the characteristic Cosserat
constants a, fJ, 1 and €. In this paper the same approach is used to obtain the solution to the
corresponding nonhomogeneous equations of equilibrium from which Green's functions are
derived. Similar results were obtained for the static case by Sandru[2] using Papkovitch's
representation. Subsequently, Nowacki[3,4] obtained Green's functions for the dynamic and
thermodynamic case by means of Helmholtz decomposition.

The weD-known Navier equations for elastic micropolar media are written as

where

Introduce l by

DIU +(A + P. -a)graddiv u+2a curl j, + X= 0

D"a + (fJ + 1 - €) grad div j, + 2a curl ii + Y=0

(1.1)

(1.2)

(1.3)

where (1/2) curl urepresents the macrorotation, while j, denotes the microrotation in the body.
Inserting (103) into (1.1) and (1.2), one arrives at

p.'flu+(A + p.)graddiv a+X =2a curll

D"l+(fJ+ 1- €)grad div l- Y=~(1+€)V2curl a.

(1.4)

(1.S)

Note, that the L.H.S. of eqn (1.4) has the same form as Navier's equation for the Hookean

tResuits presented here were obtained in the course of research sponsored by the National Research Council of
Canada, Gnnt No. A-Tl36.

*Numbers in square brackets indicate publications listed under References.
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body. Assume the solution to eqns (1.4) and (1.5) for the displacement field in the form

u= u'+u"

where Q' is the solution to the equation

f.LV2ii' +(,\ +f.L) grad div ii' +X=O.

Performing the curl operation on eqn (1.7), one obtains

2 I-V curl ii' =- curl X
f.L

(1.6)

(1.7)

(1.8)

Substituting (1.6) and (1.7) into (1.4) and (1.5), and using (1.8), there result

p.V2ii" +(,\ + f.L) grad diva" =2a curl { (1.9)

- - - 1 I -1>.2t +(/3 +y- e') grad div t - Y =2(y +E)V2 curl ii" - 2f.L (y +E) curl X (1.10)

Performing the operations of divergence and curl, separately, on (1.9), leads to the following
relations

(1.IIa,b)

Taking the curl of (1.10) results in

- 1 2 1 --1>.2 curl t=2(Y+€)V curlcurla"-2f.L (y+€)curlcurlX+curl Y. (1.12)

Substituting eqn (1.llb) into the L.H.S. of this equation, after some algebra, one arrives at

where

2 a - I -
VHu" = f.L(f.L + a) (V2 - grad div)X +2p.12 curl Y (1.13)

The function J can be found directly from eqns (1.1) and (1.2). Performing the curl operation
on (1.1) and the divergence on (1.2), leads to

1>.2 curl u+ 2a curl curl J +curl X = 0

1J) div J = -div Y

where

Applying 1>.21J) to eqn (1.2) and keeping in mind the relations (1.14), one obtains

- 1 [ - 2 - (...l::..±.!.. ) -]DHV2tjJ= 4af.L{Z 2aDcurIX-(p.+a)V DY+(p.+a) D-/3+ 2y H graddiv Y

where

(1.14a)

(1.14b)

(1.15)
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Equation (1.7) is solved using a similar procedure, to obtain

- 1 ( - A+u -)V%V2u' = -- V2X -...:.:.....;J::graddiv X .
p. A+2p.

Next, introduce Fourier transforms [5] as

where

Using these transforms results in the solution to the problem at hand in the form

339

(1.16)

(1.17)

(1.18)

One should note that every solution (0, ti) of Navier's equations for micropolar media, eqns
(1J) and (1:2), may be obtained by superimposing two solutions; the first part, Ii' being the same
as for the Hookean body, while the second part, (Ii", ti) is peculiar to Cosserat media.
Therefore, if a solution is to be found to a Cosserat problem, described by relations (1.1) and
(1.2) with known forces X and Y, one can construct such a solution from the well known
solution for Hooke's body, and add to that solution the additional terms, Ii" and ti, representing
the Cosserat contribution.

ss Vol. 16. No. 4-0
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2. GREEN'S FUNCTIONS

Using the results of the previous section. Green's functions for the displacement and the
rotation for isotropic elastic micropolar media subjected to concentrated body forces and
concentrated body couples are determined.

(a) Concentrated body force
Assume that a concentrated force parallel to the xII-axis is applied at the origin of the

coordinate system and that the body couples vanish, i.e.

(2.1)

then

and eqns (1.19H1.2l) take the form

'1")( -) _~ I A. +2#£ 0
2

J
Uj x - 8il", I +81?",(A. +2",) oX"oXj 2,

u~(,,)= - 8j"a 1- a a2
/4

81T3",(", +a) 3 81T3",(", +a) cJx"aXj ,

q,.l")(i) - fj'" cJ 1
) - 16",P1T3 aX, 4

where

(2.2)

(2.3)

(2.4)

(2.5)

Substituting the above integrals into eqns (2.3H2.5) and using eqn (1.6), we obtain expressions
for the displacement and rotation fields due to a concentrated force given by eqn (2.1). The
solution to this problem shall be referred to as Green's functions for the case of a concentrated
force, and is given as

(2.6)

(2.7)

where

B= a
41T",(a +",)
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(b) Concentrated body couple
Assume that a concentrated couple. parallel to the xn-axis is applied at the origin of the

coordinate system. and that the body forces vanish, i.e.

then

if!n}=~
If (21TY'.·

Equations (l.19H1.21) now take the form

uj(a)(x) =0

"(~) Ella VI.
Uj'" =16pJ21T3 '"

Ca) 1 [e+r (l£+a)(X+E)VV ]
~ (x) = 4apl2 8'lT (4,.13 +VjVIII..> + S1T'(P+2X) j Js

where

Thus we arrive at Green's functions for concentrated couple forces as

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

3. CENTRE OF COMPRESSION AND TORSION
Let a pair of equal. opposite and collinear concentrated unit forces parallel to the xt-axis act

at the point (x; +(Ax;!2), xi, xD and (xi -(Ax;!2), xi. xi). The displacement produced by these
forces will be

Lettina Ax; -+0. we arrive at the displacement produced by these forces as

(3.2)

ADalogously, we obtain an expression for the rotation field produced by these forces as

(3.3)

GeneraUy, if three pairs of such forces act in the directions .lit x, and Xl, the displacement and
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rotation field produced is given by

Using eqns (2.6) and (2.7) we arrive at

x _ a ",x
tPj - -;r 'f!jk·

uXk

(3.4)

(3.5)

(3.6)

(3.7)

Next, let aconcentrated unit force pointing in the direction of the positive xraxis act at the
point (xi +(Ax112), xi, xi). Also, let asimilar force with opposite direction act at the point
(XI - (Axi/2), xi, xi). The displacement produced by these forces will be

Letting Axi .... 0. one arrives at the displacement produced by this double force as

(3.9)

Now. let a similar pair of forces. parallel to the xraxis act at the points (XI, xi+(Ax2l2), xi) and
(xi. xi-(Ax2I2), xi). As a result one obtains

XMU(I) =.l- GX(i i')
j dxi jl • •

The sum of these double forces (with moments) produces the displacement

XM iJ GX(- -')+ iJ GX(- -')Uj =--;r j1 x,x -;r jl x,x .
u'XI OX2

Analogously, one can derive

Using eqns (2.6) and (2.7) there results

and

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

The solution (3.13) is formally the same as that for a concentrated moment in classical elasticity
theory.
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Similarly one can introduce the concept of the centre of torsion for a load system consisting
of three pairs of equal, opposite and collinear couple vectors acting in the directions x" x% and
Xl, respectively. After an analogous procedure, bearing in mind eqns (2.10)-(2.12), we arrive at

(3.15)

(3.16)

4. THE POINT DEFECTS
#) #)

Consider an infinite elastic body containing the initial distortions 'Y/i and lC}i< H the elastic
#) #) •••

deformations produced by 'Yilt lC4l are denoted by 1ft and Kji, the total deformations may be

written in the form

o. 0«
'YJ; ::;: 11i' + 'Yil, lC/I::;: Kp +Kji.

ne stress fields, !TJl and 1tP, are aiven by

where

AjJtlll == [A8ij8_ +(1£ +a)8tt8p., +(1£ -Q)&m~l

Bij1m := [13¥xm +('Y+t')~8Jm +('Y - ~)8im8jtJ.

(4.1)

(4.2)

The deformations 'Y~ K./I may be expressed in terms of the displacements, UI and rotations, 4>1

'Y/l := lltJ - ftJl4. lCJl == 4>u

Substituting eqns (4.4) into (4.2) and (4.3), and usina the equations of equilibrium

O)IJ =0

EiJtUJi + J.A1lJ == 0

the non-homogeneous system of equations is obtained as

o 0
IJpq,j +Rjill, := Bij1mlCmkJ +2aEi/j:'Ylt

Lg=Ai1itVpV~

1>,::;: Bi/ti$V,V,-4a~

RJI ::;: 2afJplVp'

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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Introduce the fictitious body forces, X·, and body couples, y.., by

.00
Y i ::: - Biikm/(mkJ - 2aEuk'Ylk

and investigate three particular cases:

o 0 0
(a) Assume 'Yii ='Yii =~ii83(i) while /(ji =O. Then

xi =-(3.\ +2#£)V~(i); yi :::0.

Substituting these relations into eqns H.13), (1.15) and (1.16), one arrives at

ii":::~ =0.

(4.9)

(4.10)

(4.11)

(4.12)

Let us also assume that the displacement field, u', has the potential, r. Equation (4.11) then
takes the following form

(4.13)

from which

(4.14)

o 0 0
(b) Assume next that /(ji =Kij ::: 8;P3(i), while 'Yii = O. In this case

yi ::: (3~ +2y)V~(i); xi = 0

and substituting these relations into eqns (1.13), (1.15) and (1.16), there results

a'::: a"=O

- _3p+2r _
Dq,- ~+2y grad8(x).

Introducing the potential, A by ~=grad A, one obtains

from which

A= __1_3~+2re-Rl~
411'#£ ~+2r R

(4.15)

(4.16)

(4.17)

(4.18)

(c) Finally, case (a) can be generalized to take into account thermal distortions. For such a
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o 0
loading case, 1'ji =a,6(i)8;j, Kji =0 and

X* =-(3'\ +2,u) grad 6.

The potential, r, has the form

3,\ +21t r O(Q dW
r(i) = 417('\ +21t») v R(i, ()

which is known as Poisson's integral.
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(4.19)

CONCLUSIONS

The solution to the nonhomogeneous equations of equilibrium for micropolar media is
obtained by superposition of two parts, the first being the familiar solution for the Hookean
case while the second part is peculiar to a Cosserat continuum. The solution has been derived
using the substitution i =(1/2) curl Ii - J.

The solution obtained is used to derive Green's functions for the case of concentrated body
forces and concentrated body couple forces. Expressions for the centres of dilatation and torsion
are derived and it is shown that the first one is associated with pure displacements while the
second one only with rotations. In the final section, the results derived are used to investigate
three specific cases of distortion in Cosserat Media.
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