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Abstract—In this paper it is shown that the solution, (4, ¢), to the nonhomogeneous equations of
equilibrium for micropolar continua can be obtained by superposition of two parts, namely (2') and (2", ¢).
The first part, &', is identical to that obtained in the Hookean case, while the second part depends only on
the constants a, 8, v and € which are specific to Cosserat continua. Using these results and Fourier’s
integral transforms, Green's functions for a Cosserat body are obtained. In addition, solutions for the centre
of compression and center of torsion are given and problems involving the distortions of micropolar
continua are considered.

1. BASIC SOLUTION
Schaefer{1]# has shown that the solution to the homogeneous equations of equilibrium for a
micropolar continuum can be constructed by superposition of two parts, the first of which is the
same as for a Hookean body while the second part depends only on the characteristic Cosserat
constants a, B, v and ¢ In this paper the same approach is used to obtain the solution to the
corresponding nonhomogeneous equations of equilibrium from which Green’s functions are
derived. Similar results were obtained for the static case by Sandru[2] using Papkovitch’s
representation. Subsequently, Nowacki[3, 4] obtained Green's functions for the dynamic and
thermodynamic case by means of Helmholtz decomposition.
The well-known Navier equations for elastic micropolar media are written as

Dii+(A+p—-a)graddivi+2acurl g+ X =0 {8
Dyii+(B+y—e€)graddivg +2acurli+ Y =0 1.2
where
Di=(u+a)V% Dy=(y+¢e)V-4a.
Introduce £ by
- 1 I
§=§curlu—¢ (1.3)

where (1/2) curl & represents the macrorotation, while ¢ denotes the microrotation in the body.
Inserting (1.3) into (1.1) and (1.2), one arrives at

pV2%u+ (A + ) graddiv i+ X =2a curl § (1.4
sz+(ﬁ+y—e)graddivf—17=%('y+e)V’curlﬂ. (1.5)

Note, that the L.H.S. of eqn (1.4) has the same form as Navier’s equation for the Hookean

tResults presented here were obtained in the course of research sponsored by the National Research Council of
Canada, Grant No. A-2736.
tNumbers in square brackets indicate publications listed under References.
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body. Assume the solution to eqns (1.4) and (1.5) for the displacement field in the form
g=a+a (1.6)
where @' is the solution to the equation
pViE +(A +p)graddivi’ + X = 0. (.7

Performing the curl operation on eqn (1.7), one obtains
V2 curl ﬁ'=-::curl)?. (1.8)

Substituting (1.6) and (1.7) into (1.4) and (1.5), and using (1.8), there result
wVa" + (A + p) grad div #" = 2a curl (1.9

Dy +(B+y—¢) grad div £ - 7=%(y+e)vzcurl &"wflﬁ(y+e)curl§. (1.10)

Performing the operations of divergence and curl, separately, on (1.9), leads to the following
relations

Vdiva"=0; uVa"=2acurlé (1.11a,b)

Taking the curl of (1.10) results in
Dcurlé= %(‘y +€)V? curl curl ﬁ"~-2-l;(y +é€)curlcurl X +curl ¥, 1.12)

Substituting eqn (1.11b) into the L.H.S. of this equation, after some algebra, one arrives at

[+

vz -
H wp+a)

(V2 grad div))?+§i—!-5curl 7 (.13

where

12=(l‘-+a)(x+f) H=V2-I
dop ’ [ty

The function ¢ can be found directly from egns (1.1) and (1.2). Performing the curl operation
on (1.1) and the divergence on (1.2), leads to

Dycurl u+2acurlcurl +curl X =0 (1.14a)
Didivg=-div¥ (1.14b)
where
D;=[(B +2y)V*-4a].

Applying DyD; to eqn (1.2) and keeping in mind the relations (1.14), one obtains

DHV}§ =@ [2«9 curl X — (u + a)V2DYP +(u + a)(D——}E-;;H) grad div ?] (1.15)

where

D’=V2~-!5, =By

v 4a
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Equation (1.7) is solved using a similar procedure, to obtain

Vv =--(v’x A—I-ze-graddle) (1.16)

Next, introduce Fourier transforms[5] as

30 =g [ [ o) exp gy avie (.17
u:(i)=(7,;l;m f f : f u($) exp (- iGx) AW(D (1.18)

where
dV(®) =dx, dxydxs, dW(D) =d¢, dL, dgs.

Using these transforms results in the solution to the problem at hand in the form

lray ] « X- —ixgly = A+ X —ix;
ik =gy [ [ e s it [ [ e sowd
(1.19

Wi =g | | f ——f-(e-%)dwm

“em” ﬂ,(‘l, +a) ax,axp I f f{z ({2 (e'ixk“)dW(Z)

a—vrf’%’?;ﬂ’ax, f f] ( )<°"“*“’dW<0 (1.20)

0 (C _‘xk‘k) d W(;)

610~ g (mstan; | Haes 4’(?* )

iy +a 9*
5[ e ama

27 ax,-axp

N .__z_._ ~ireti) W tafy+e) 3
X ff {z({2+ )(e ) (o (211') (ﬁ+2‘)’) ax,ax,,

Il o+ )(e-%)dw“-’} : (1.21)

One should note that every solution (&, &) of Navier’s equations for mlcrOpolar media, egns
(1.1) and (1.2), may be obtained by superimposing two solutions; the first part, &’ being the same
as for the Hookean body, while the second part, (2", ¢) is peculiar to Cosserat media.
Therefore, if a solution is to be found to a Cosserat problem, described by relations (1.1) and
(1.2) with known forces X and Y, one can construct such a solution from the well known
solution for Hooke's body, and add to that solution the additional terms, #” and ¢, representing
the Cosserat contribution.

S§S Vol. 16, No. 4—D



340 1. P. Nowacki and P. G. GLOCKNER
2. GREEN'S FUNCTIONS
Using the results of the previous section, Green's functions for the displacement and the

rotation for isotropic elastic micropolar media subjected to concentrated body forces and
concentrated body couples are determined.
(a) Concentrated body force
Assume that a concentrated force paralle! to the x,-axis is applied at the origin of the
coordinate system and that the body couples vanish, i.e.
X" = 6(%)6, Yij=0 Q.0

then

x,t~>=-{-2-35,,, f j: f a,-,.ss(fxe-m)dxf(f)=(—z%ﬁ 22

and eqns (1.19)~(1.21) take the form

“n) 5 5%. A+2u 3
{n},
umE) = b+ 87 (A +24) 8x,0%; b, 2.3)
" S 82
oy = O
= e T o) B ) s 24
u) 3
&)= 16;4! o 9x Frl 2.5

where

w0 -ind) 2
o[
{;

Iz—ff ]" —dW=—7R
RH
L= ” R

"‘"”-J{z({; AW =272 € . -

R=[(x;—x i)(xi —X i)]”2~

Substituting the above integrals into eqns (2.3)~(2.5) and using eqn (1.6), we obtain expressions
for the displacement and rotation fields due to a concentrated force given by egn (2.1). The
solution to this problem shall be referred to as Green's functions for the case of a concentrated
force, and is given as

~Ril
G,{(g):ﬁr—(a,,vm e vv,x)+B(Pv,v e e -1 ah%), 2.6

-RiL
XD = 3o e..;..V 3——%—-— @

where

.
dmula+u)
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(b) Concentrated body couple
Assume that a concentrated couple, parallel to the x,-axis is applied at the origin of the
coordinate system, and that the body forces vanish, i.e.
X" =0, Y"=8(%)8, 2.8)

then
29

Equations (1.19)-(1.21) now take the form

UM (E=0 (2.10)
u;'(f)=-l-6-:1§'g-1pv,1. @)

RV | +a
D= 1= [%,— (G + V,V,1) *QsL_w’?E)%'Sl v,v,zs] Q1)

where
IS~HJ{:(2 et 4w = 2% (T~ ; h).

Thus we arrive at Green's functions for concentrated couple forces as

1-e ™
G}:(f) = 8 ™ vm R (2- 13)
1 e®—-1 1 e Rr_e R\ Lia e”
Sf0 =g W T e (R Vit h e

-3, CENTREQOFCOMPRESSION ANDTORSION
Let a pair of equal, opposite and collinear concentrated unit forces parallel to the xy-axis act
at the point (x{ + (Ax}/2), x3, x3) and (x] —(Axif2), xi, x3). The displacement produced by these
forces will be

X ¥ Axi ' [ X ¥ AX; * 1

X Gii xt;Xz,xs,xz*'—z WX, X3)  Gj thz.xs.xx“—'z sy X2, X3
= - . 1
Ax Ax) G.D

Letting Ax{-»0, we arrive at the displacement produced by these forces as
*uf = —- j’f £ ). (32
Analogously, we obtain an expression for the rotation field produced by these forces as
d
x@"’=§;§¢ﬁ(£ x). 33

Generally, if three pairs of such forces act in the directions x,, x; and x,, the displacement and
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rotation field produced is given by

3
Xy = E GX (3.4)
Xy =5%z¢>§£. (3.5
Using eqns (2.6) and (2.7) we arrive at
Xy o1 2 n
Y R (36)
X¢;=0 3.7

Next, let a concentrated unit force pointing in the direction of the positive x-axis act at the
point (x]+(Ax3/2), x3, x3). Also, let a similar force with opposite direction act at the point
(xi{—(Axi/2), x3, x3). The displacement produced by these forces will be

X ¢ AX{ [ X ] AX; 1ol
Gi Ihxzsxs,xl"T,-‘z,xs Gpn X;,Iz,xs,xu‘*"i‘,xzah

XM, (2) —
u =
d Axi Ax}

33
Letting Ax}-»0, one arrives at the displacement produced by this double force as
d -
XMy@ = e GH(X, X). (39

Now, let a similar pair of forces, parallel to the x,-axis act at the points (x{, x5+ (Ax3/2), x3) and
(x1, x3—(Ax3/2), x3). As a result one obtains

d = o
XMy = P Gz, 2. (3.10)
The sum of these double forces (with moments) produces the displacement
My =8 _oxz it oxgw 3.1
%= "o x‘z(x,x)"'gx'i (% X). (3.1
Analogously, one can derive
XMz — d Xro d X =t
&= r™ i %, £) +3‘£ ;i %) (3.12)

Using eqns (2.6) and (2.7) there results

M, ¢ l 12 e‘"”
X u,~=e;;;V;(———-—8m‘V R+B-—"R ) (313)
and
Mg, ==L (V) - 6V 1-e® 3.14
¢1"‘8m‘(€uz 1= & V2) - (3.19)

The solution (3.13) is formally the same as that for a concentrated moment in classical elasticity
theory.
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Similarly one can introduce the concept of the centré of torsion for a load system consisting
of three pairs of equal, opposite and collinear couple vectors acting in the directions x;, x; and
X3, respectively. After an analogous procedure, bearing in mind eqns (2.10)-(2.12), we arrive at

Ylij ={ (3.19)

_ 1 ...é. e~ Ry
4= 472y +8) 3.!}( R ) 616

4. THE POINT DEFECTS

o o
Consider an infinite elastic body containing the initial distortions y; and g If the elastic
[ . '
deformations produced by v; «y are denoted by ;3: and xj the total deformations may be
written in the form

[ '3 [ [
Y= Yet v Ki= Kt K 4.0

The stress fields, o; and uy, are given by
0
it = Agm Yk = Aliem Yink @2
]
5 = Bigm#mi = BiomKm

where

Agim = [A8Bim + (1 + a)8aSjm + (1 ~ a)Bindz ]
Bijgm = [B8ybim + (y + €)8aBpm + (¥ — €)8mu).

The deformations 7y, «; may be expressed in terms of the displacements, «; and rotations, ¢

Ve =y — b Ki =y 4.4

Substituting eqns (4.4) into (4.2) and (4.3}, and using the equations of equilibrium
oy =0 @.5)
oy + py =0 (4.6)

the non-homogeneous system of equations is obtained as

0
Ly + Rudy = A Yms @n
° s
Dy + Rty = Bigmbmay + 20€u Ve A8
where
Lg = A;,,,V,V,

Dy = B;,;,V,V, ~4ady
Ri; = 2a€]piv‘u
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Introduce the fictitious body forces, X*, and body couples, Y*, by

* [
Xi= ‘A;jkamk.i “4.9)
* 0 [}
Y =~ BigmKmk ~ 20€uYi (4.10)
and investigate three particular cases:
]
(a) Assume y,, 'y,, 8;0:(x) while x; = 0. Then

XF=-0GA+2)95(8); Yi=0.

Substituting these relations into eqns (1.13), (1.15) and (1.16), one arrives at

L 3A+2 B}
Vi =A—+§~£grad 5(%) @.11)
i"=¢=0. @.12)

Let us also assume that the displacement field, &', has the potential, I', Equation (4.11) then
takes the following form

o 3A+2u o
VI = A+ 24 8(%) 4.13)
from which
3x+2
r-—“m m (4.14)

0 0 0
(b) Assume next that x; = «; = 8;8:(%), while y; = 0. In this case

Yi=(38+29)V&(%); Xi=0

and substituting these relations into eqns (1.13), (1.15) and (1.16), there results

' =i'=0 @.15)
_%tzzz grad 5(). 4.16)

Introducing the potential, A by ¢ = grad A, one obtains

. +2y ...
(v v) -é-lﬁ *2 50 @.17)
from which
___1 3g+2ye’®
A= R 4.18)

(c) Finally, case (a) can be generalized to take into account thermal distortions. For such a
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0 0
loading case, y; = a,6(%X)8;, x; =0 and

X*=—(3A +2u)grad 6.

The potential, T, has the form

o __3A+2u [103)
I(x) = A0 20 Jy RE D w 4.19)

which is known as Poisson’s integral.

CONCLUSIONS

The solution to the nonhomogeneous equations of equilibrium for micropolar media is
obtained by superposition of two parts, the first being the familiar solution for the Hookean
case while the second part is peculiar to a Cosserat continuum. The solution has been derived
using the substitution £ =(1/2) curl @ - ¢.

The solution obtained is used to derive Green’s functions for the case of concentrated body
forces and concentrated body couple forces. Expressions for the centres of dilatation and torsion
are derived and it is shown that the first one is associated with pure displacements while the
second one only with rotations. In the final section, the results derived are used to investigate
three specific cases of distortion in Cosserat Media.
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